GP2D02

Features

- 1. Integrated *PSD, infrared LED and signal processing ciruit into a compact package
- Less influence on the color or reflectivity of reflective object
- 3. High precision distance measurement output for direct connection to microcomputer
- Low dissipation current at OFF-state (Dissipation current at OFF-state: TYP. 3 μ A)
- 5. Capable for changing of distance measuring range to change the optical portion (lens)

*PSD Position Sensitive Detector

■ Applications

- 1. Sanitary sensors
- 2. Human body sensors for consumer pr such as electric fans, air conditioners. etc.
- 3. Garage sensors

Compact, **High Sensitive**Distance Measuring **Sensor**

Outline Dimensions

(Unit : mm)

Absolute Maximum Ratings (Ta = 25°C, $V_{cc} = 5V$)

Parameter	Symbol	Rating	Unit	
Supply voltage	V_{CC}	-0.3 to +10	v	
*1 Input terminal voltage	V_{in}	-0.3 to $+3$	v	
Output terminal voltage	BV_0	-0.3 to $+10$	V	
Operating temperature	T_{opr}	-lo to +60	${\mathbb C}$	
Storage temperature	T_{stg}	-40 to +70	$^{\circ}\mathbb{C}$	

*1 Open drain operation input

■ Operating Supply Voltage

Symbol	Rating	Unit		
Vcc	4.4 to 7	v		

Electro-optical Characteristics

 $(Ta=25^{\circ}C, Vcc=5V)$

Paramete	r	Symbol	Conditions		MIN.	TYP.	MAX	Unit
Distance measuring ra	ange	$\triangle L$	*1		10	_	80	cm
Output terminal voltage		Voh	Output voltage at High	L=20cm	Vcc-0.3	1	ı	v
		V_{OL}	Output voltage at Low	*1	_		0.3	v
Distance characteristics of output		D	L= 80cm, *1			75	1	DEC
		$\triangle D$	Output change at L= 80cm to 20cm,*1		48	58	68	DEC
Dissipation	at operating	Icc	L=20cm, *1, *2			22	35	mA
Dissipation current	at OFF-state	Ioff	L= 20cm, *1		_	3	8	μА
Vin terminal current		$I_{ m vin}$	Vin=OV		_	-170	- 280	μΑ

Note) L: Distance to reflective object

DEC Decimalized value of sensor output (8bit serial)

*1 Reflective object. White paper, reflectivity 90%

*2 Average dissipation current value during distance measuring operation when detecting of input signal, Vin as shown in the timing chart

*3 Vin terminal : Open drain drive input.

Conditions: Vin terminal current at Vin OFF-states - 1 \mu A Vin terminal voltage at Vin ON-state ≤0.3V

Vin Input Signal for Measurement

■ Timig Chart

Example of distance measuring output

■ Distance Measuring Output VS. Distance to Reflective Object

• Please refer to the chapter "Precautions for Use." (Page 78 to 93).